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By invoking the radiation reaction force, first perturbatively derived by Landau and Lifschitz, and later
shown by Rohrlich to be exact for a single particle, we construct a set of fluid equations obeyed by a relativistic
plasma interacting with the radiation field. After showing that this approach reproduces the known results for
a locally Maxwellian plasma, we derive and display the basic dynamical equations for a general magnetized
plasma in which the radiation reaction force augments the direct Lorentz force.
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I. INTRODUCTION

In recent years relativistic plasmas have attracted consid-
erable attention, primarily in connection with their possible
role in a variety of astrophysical phenomena. Observations
strongly suggest the existence of relativistic plasmas in the
early universe, in active galactic nuclei, relativistic jets,
black hole magnetospheres, etc.[1–3]. In addition to these
astrophysical settings, the advances in short petawatt pulse
laser technology have been harnessed to create laboratory
relativistic plasmas by irradiation on gases[4].

A kinetic description of relativistic plasmas is difficult and
sometimes not even possible. The relatively less detailed and
simpler hydrodynamic description, however, may be an ad-
equate framework for modeling the most significant and
complex phenomena which take place in relativistic plasmas.
Different kinds of extant hydrodynamic models[5–7] are
based on the integration of relativistic kinetic equation to
derive moment equations with a subsequent recipe for clos-
ing the moment chain. Ideology and practice of the proce-
dure is relatively simple in the collisional limit while in the
collisionless case, it becomes less straightforward. The so-
called Maxwellian or thermodynamic closure, in which the
chain of moment equations is truncated by assuming a Max-
wellian distribution function(with varying parameters, such
as density, temperature, and fluid element velocity) is the
most popular choice. Recently, however, a different closure
approach has been developed for magnetized plasmas in
which important physics associated with pressure anisotropy
and parallel heat flow has been included[8–10]. The latter is
not accessible in a Maxwellian closure.

The closure problem in a relativistic plasma is further
exacerbated by the fact that such a plasma is strongly radia-
tive, and in the bulk of astrophysical situations it is embed-
ded in the intense incoherent radiation field of other astro-
physical objects[1,2]. In most publications devoted to
relativistic plasmas, the radiation reaction force is neglected;
it is ordered small compared to the Lorentz force and is not
expected to be a major determinant of plasma dynamics. This
assumption may not be correct in astrophysical conditions
where spatiotemporal scales of plasma motion are suffi-
ciently large. The radiation pressure could also be important;

in fact, the acceleration of a plasma by radiation pressure has
been considered as a possible mechanism for producing rela-
tivistic outflows(jets) from very luminous radiation sources,
such as the active galactic nuclei or compact galactic objects
[11–13].

Through Compton scattering of external photons, indi-
vidual particles in a plasma lose energy and at the same time
there is momentum transfer to the plasma. The bulk flow can
be either accelerated or decelerated(i.e., radiative drag). The
radiative drag force is derived by resorting to a phenomeno-
logical, test-particle approach. In this approach the energy-
momentum conservation(in the Thompson or the Klein-
Nishina regime) is invoked to treat the particle-photon
interaction with subsequent integration of the obtained force
over the distribution function(see, for instance, Ref.[14]).

It is interesting to remark that Landau and Lifshitz[15]
demonstrated that the radiation drag force acting on an elec-
tron which scatters photons can be derived(in the Thompson
regime) not only through energy-momentum considerations
but also by averaging the radiation reaction force. Similarly
Gun and Ostriker[16] found that in the field of electromag-
netic (EM) radiation, the radiative losses will ultimately lead
to an increase in particle energy. The drag appears due to the
appropriate phase lag between velocity and the field. The
situation turns out to be similar to what is known in the
collisional case, i.e., despite the fact that collisions are dissi-
pative, the particles acquire energy due to inverse brems-
strahlung.

Thus the fluid equations, derived from the relativistic ki-
netic equation in which the radiation reaction force is in-
cluded, provide not only a proper description of hot plasma
dynamics on the long scale, but also contain self-consistent
expression of the drag force acting on a plasma embedded in
the radiation field of other hot objects. Our aim here is to
construct the relativistic hydrodynamics taking into account
the radiation reaction in magnetized plasmas. This theory is
the natural generalization of the recently developed relativ-
istic theory of magnetized plasmas[8–10] and will consider-
ably extend its domain of applicability. Naturally the nota-
tion and definitions used in these references will be closely
followed here.
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Before deriving the equations for the magnetized case, we
study the role played by the radiation reaction force in two
elementary but important physical problems:(1) in the dy-
namics of a single charged particle, and(2) the hydrodynam-
ics of ane-p plasma in the Maxwellian unmagnetized case
(derived in Appendix A). We will compare our results with
the old results obtained by the standard test-particle ap-
proach.

II. RADIATION REACTION FORCE AND KINETIC
EQUATIONS

There have been a few attempts in the past to construct
the kinetic theory of plasmas that encompasses effects re-
lated to radiation reaction[17]. The construction of a kinetic
theory of classical charged particles is based on the equation
of motion for a single particle. Although, the methodology
for deriving the kinetic equation obeyed by the one-particle
distribution function when Lorentz force dominates the
charged particle dynamics is standard, the inclusion of the
radiation reaction force in the system, in general, is problem-
atic. Several questions about the radiation reaction force—its
physically correct derivation, realm of validity, its “defects,”
etc., have been a “permanent” topic of active discussion for
more than a century. Interested readers can find it in Ref.
[18]. For all their differences, every investigation begins with
the following equation of motion for a single charged par-
ticle (speed of light,c=1):

m
dum

ds
= eFmnun + sm. s1d

Here ua is the ath component of the contravariant reduced
four-momentumum=fg ,gug, g=s1−u2d−1/2, whereu is the
particle velocity,s is the proper time,ds=dt/g, Fmn is the
electromagnetic tensorfumum=−1 consistent with the time-
like metric hmn=diags−1,1,1,1dg used throughout this
study, andsm is the contravariant radiation reaction force:

sm =
2e2

3
Sd2um

ds2 +
d2un

ds2 umunD . s2d

Equations1d, with the radiation reaction force in the form
Eq. s2d, is known as the Lorentz-Abraham-DiracsLAD d
equation. The LAD equation is of third order implying that
the initial position and velocity do not uniquely determine
the particle dynamics; initial acceleration is also needed. It
would appear that relativistic kinetic equation for the distri-
bution function would have to be constructed in 12- rather
than eight-dimensional phase spacef17g. Such a theory,
however, cannot be free from the “defects” which already are
contained in the LAD equation. A particularly damaging de-
fect is the existence of the so called runaway solutions
f15,18g—the exponential growth of velocity in the absence
of an external Lorentz force. According to Rohrlichf19g, the
most basic defect in LAD equation is that the radiation reac-
tion force does not vanish when the external forcesthe cause
of acceleration and of corresponding radiationd goes to zero.

This serious defect seems to disappear in the form of Eq.
(1) suggested by Landau and Lifshitz[15] in which the ra-
diation reaction force reads as follows:

sm ;
2

3

e3

m
Fukul]lFmk +

e

m
sFmkFklul + umukulFksFsldG .

s3d

The main assumption in deriving Eq.s3d slet us call it the LL
equationd is the smallnesssas compared to the Lorentz forced
of the radiation reaction force in the particle’s rest frame.
Note that under certain conditions the radiation reaction
force seven when it is small in the particles rest framed can
become larger than the Lorentz force in the Lab framef15g.

This “problem-free” expression forsm prompted Rohrlich
(encouraged by the results obtained by Spohn[20]) into
making a very strong statement. He claims that the LL equa-
tion, despite the fact that it was derived as an approximation
by Landau and Lifshitz, is exact for a point particle. Though
this claim needs careful examination, Rohrlich has made a
sufficiently convincing case that the LL equation could be
used with little risk to describe the radiation reaction in most
problems of interest. The Landau-Lifshitz-Rohrlich prescrip-
tion not only corrects the defects of the LAD equation, it also
yields a dynamic equation that is a conventional second or-
der differential equation for the particle position. From our
current perspective this feature of the LL equation is, per-
haps, the most attractive of all; it allows the construction of a
relativistic kinetic theory in the conventional phase space.

Before going to the kinetic formulation, we would like to
explicitly demonstrate the role of the radiation reaction force
in the scattering processes. In the Thompson regime, the
equation of motion of the particle exposed to a photon source
has been suggested by Phinney[12], and by Sikora and Wil-
son [13]. In the current notation, the equation reads

dpa

ds
= − ssT̄abub + T̄bguaubugd, s4d

where pa=mua is the particle four-momentum,s

=8pe4/3m2 is the Thompson cross section, andT̄ab is the
energy-momentum tensor of the averagedsin high fre-
quencyd radiation field. According to Phinney this equation
provides the most elegant derivation of the Compton energy
lossesscoolingd ssee Blumenthal and Gould in Ref.f14gd; in
particular, for an isotropic radiation field with energy density

T̄00=U, we havedp0/dt=−s4/3dsg2sud2U. At this stage,
we would like to remark that Eq.s4d was constructed even
earlier by Landau and Lifshitzf15g for the particle energy
loss in the field of an isotropic distribution of EM waves
sphotonsd. However, in that treatment, the relation be-
tween the derived expression for force, and the radiation
reaction force was not worked out explicitly. It is straight-
forward to show that the radiation reaction force of the LL
equation, Eq.s3d, can be rewritten as

sa =
2e3

3m

] Fab

] xg ubug − ssT̄abub + T̄bguaubugd, s5d

where
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T̄ab =
1

4p
f− FagFg

b + 1
4gabFgdF

gdg s6d

is the EM field energy-momentum tensor; Eqs.s5d and s6d
are entirely equivalent to Eq.s4d for the problem solved by
Landau and Lifshitz.

After providing a perspective for the LL equation, we turn
to the kinetic description of a radiating plasma. Incorporating
the LL equation, the generalization to the hierarchy of
Bogolyubov equations for a radiating plasma has been car-
ried out by Kuzmenkov[21]. Neglecting correlations, the
kinetic equation for a one-particle distribution turns out to be
the appropriately modified Vlasov-Boltzmann equation
which will be systematically treated in the following section
on magnetized plasmas. Realizing, however, that there are
problems of interest in which the plasmas may not satisfy the
“conditions for magnetization,” we derive in Appendix A the
radiation-modified equations pertinent to a plasma with Max-
wellian closure.

III. MAGNETIZED PLASMA

A. General formalism

In this section we wish to introduce the effects of radia-
tion missing in the fluid description of magnetized relativis-
tic plasmas presented in Refs.[8–10]. For notational as well
as other details the reader is requested to consult these ref-
erences. For an optically thick plasma, radiation enters the
fluid dynamics in two ways. First, the equilibrium photon
bath contributes to the total energy-momentum tensor(radia-
tion pressure). This effect is relatively easy to include, essen-
tially by adding the photon pressure to that of the plasma, but
for clarity and simplicity it is omitted here. We focus atten-
tion on the radiation reaction, whose inclusion is not trivial
even in the optically thick case.

We start with the kinetic equation

pm

m
]mf +

] sfFmd
] pm = C, s7d

whereC is a collision operator, andFm is the total force,

Fm = eFmnpn + sm,

consisting of the Lorentz forceeFmnpn to which the radiative
reaction force of Landau, Lifshitz, and Rohrlich,

sm ;
2

3

e3

m
Fukul]lFmk +

e

m
sFmkFklul + umukulFksFsldG ,

has been added. Using the definitionFmkFkl=−Wel
k, where

W=B2−E2 is the first relativistic invariant of the electromag-
netic field, the radiative reaction force is expressed as

sm =
2

3
S e

m
D3Fpkpl]lFmk − eWel

kplShk
m +

pkpm

m2 DG . s8d

To find a fluid description of the radiative plasma that in-
cludes this radiative effect, we need to find the moments of
the force.

We define the general moment

Sab¯g ;E d3p

E
papb

¯ pg] snf

] pn .

Observe that

pmShk
m +

pkpm

m2 D = 0.

It follows sin view of the antisymmetry of the Faraday ten-
sord that

pns
n = 0.

Therefore, one can rearrange the derivative as ifE;p0spd
were constant. In particular, we may write

Sab¯g = −E d3p

E
snf

]

] pn spapb
¯ pgd

or

Sab¯g = −E d3p

E
fshapb

¯ phgj,

where the curly brackets indicate indicial symmetrization as
usual. It is convenient to introduce

S̄ab¯g ; −E d3p

E
fsapb

¯ pg,

whence

Sab¯g = S̄hab¯gj. s9d

Let Msnd
ab¯g denote thenth moment of the distribution(a

tensor of rankn). Then we have shown that thenth moment
of radiative reaction is given by Eq.(9) with

S̄ab¯g = −
2

3
S e

m
D3

fs]lFakdMsn+1dk
lb¯g − eWsel

aMsnd
lb¯g

+ el
km−2Msn+2dk

alb¯gdg. s10d

There are two moments of primary interest: the energy-
momentum conservation law

]nT
mn − eFmnGn = Cm − Sm s11d

requires the first moment,

Sm = −
2

3
S e

m
D3

fs]lFk
mdTkl − eWeklshkmGl + m−2Mmkldg,

s12d

while the evolution ofMabg;Ms3d
abg depends upon the sec-

ond moment,

Sab = S̄ab + S̄ba

with
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S̄mn = −
2

3
S e

m
D3

fs]lFk
mdMnkl + s]lFk

ndMmkl − eWeklsTnlhkm

+ Tmlhkn + 2m−2Mmnkldg. s13d

These results are fully general. However, fluid closure might
require knowledge of higher moments ofs. We next special-
ize to a situation in which the above two moments are suffi-
cient for a closed description.

B. Small gyroradius limit

The evolution of a magnetized plasma will be affected by
radiation reaction force as well as other radiative processes.
However, magnetization of the plasma requires that the
dominant electromagnetic field vary slowly on the gyroscale,
and in that case theforms of the various moments are not
changed by radiation. Thus a description in terms of the fa-
miliar variables,

nR,Vi,pi,p',qi,

remains possible; only the evolution equations are changed.
As remarked previously, the parallel and perpendicular pres-
sures appearing here will, in general, include radiation pres-
sure swhich is by itself isotropicd along with plasma pres-
sure.

Using the known, magnetized forms of the tensorsGa,
Tab, andMabg we find that

eklGl = 0, s14d

ek
mTmn = emnp', s15d

eklMklm = 2sm1Um + m3kmd, s16d

wherekm is a four-vector orthogonal toUm f8g. The radiation
reaction moments, then, reduce to

Sm = −
2

3
S e

m
D3Fs]lFk

mdTkl −
2eW

m2 sm1U
m + m3k

mdG
s17d

and

Smn = −
2

3
S e

m
D3

fs]lFk
mdMnkl + s]lFk

ndMmkl

− 2eWsemnp' + m−2eklMmnkldg. s18d

A stronger simplification is possible, although perhaps
questionable. We have already assumed that the Faraday ten-
sor is dominated by its slowly varying part. If the rapidly
varying part, corresponding to radiation, is neglected on the
right-hand sides of Eqs.(17) and(18), then the terms involv-
ing gradients of the Faraday tensor become small, of orderd
compared to the remaining terms. In that case the lowest
d-order moments are simply

Sm =
4

3

e4

m5Wsm1U
m + m3k

md s19d

and

Smn =
4

3

e4

m3Wsemnp' + m−2eklMmnkld. s20d

The remaining unknowns, the fourth-rank tensor contribu-
tions to Eq.s20d, are computed in Appendix B.

IV. MODIFIED FLUID EQUATIONS

The new radiation reaction terms enter the fluid closure in
simple combination with moments of the collision operatorC
as seen in Eq.(11). Hence the necessary radiation reaction
moments are the same as the needed moments ofC:

Si = b ·S, s21d

SE = S0, s22d

SiE = − 1
2sUakb + kaUbdSab, s23d

S' = eabSab. s24d

Each of these quantities enter the closed set of fluid equa-
tions by means of the replacement

C → C − S. s25d

The two first-order moments are found from Eq.(19):

Si =
4

3

e4

m5WSm1gVi + m3gÎW

B2D , s26d

SE =
4

3

e4

m5WSm1 + m3gÎB2

W
ViD . s27d

To compute the second-order moments, we first note the
identities

emnhmn = emne
mn = 2,

emnU
mUn = 0,

emnskmUn + Umknd = hmnskmUn + Umknd = 0,

UmUnbskmUn + Umknd = 0,

skmUn + UmkndskmUn + Umknd = − 2.

Then Eq.sB6d ssee Appendix Bd can be seen to yield

SiE =
4

3

e4

m3WQ3, s28d

S' =
8

3

e4

m3WsQ0 + Q1 + p'd. s29d

Finally we substitute these expressions for the radiative
reaction into the appropriate set of closed moment equations.
For a magnetized plasma, such a closed system is available
[8]; we need only add the radiative reaction terms computed
here. As we have noted, the new terms do not introduce new
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moments and therefore do not require additional equations.
The covariant form of the closed fluid system for each
plasma species has a compact expression

FmaS ] Tak

] xk + Sa − CaD = eEiBGm, s30d

eabS ] Mkab

] xk + Sab − CabD = 0, s31d

sUakb + UbkadS ] Mkab

] xk + Sab − CabD = − 2eEih. s32d

The set of Eqs.(30)–(32), in tensor notation, or their
equivalent three-vector expression, Eqs.(C1)–(C4) of Ap-
pendix C, constitutes the main result of this paper. Future
work will deal with laboratory and astrophysical applications
of this basic system, in which the radiation reaction force is
a codeterminant(with the direct Lorentz force) of the dy-
namics of a magnetized plasma.
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APPENDIX A: MAXWELLIAN CLOSURE

In this appendix we derive the radiation-modified hydro-
dynamic equations for systems for which the local Maxwell-
ian (thermodynamic) closure can be invoked. These equa-
tions, unlike the equations derived in Secs. III and IV, are
valid for arbitrary magnetic fields. In addition, Maxwellian
closure allows us to compare our results with what is already
known—much of which pertains to precisely this case.

We shall concentrate on a collisionless plasma, i.e., when
particles are correlated with themselves due to the delayed
interaction, while correlations with other particles(colli-
sions) are neglected. Usually by collisions we mean the cor-
relations between particles where interactions over long
times are replaced by effective short-time interactions. For a
relativistic plasma this procedure leads to the collisional in-
tegral (or generalized Landau integral) of Beliaev and Bud-
ker [22].

The procedure is absolutely similar to but simpler than the
one carried out in Sec. III. In addition to the standard mo-
ments defined in the main text, it is convenient to introduce
the entropy four-flow vector

Sa = −E d3p

p0 pafhlnfs2p"d3fg − 1j, sA1d

which will be found to obey

] Sa

] xa = − mE d3p

p0 sa ] f

] pa . sA2d

The local Maxwellian distribution functionf5g,

feqspd =
1

s2pqd
expSm − paUa

T
D , sA3d

has the following local parameters:m, the chemical potential;
T, the temperature; andUa, the hydrodynamic four velocity:
Ua=sg ,gUd, g=s1−U2d−1/2 sUaUa=−1d. This distribution
yields the flux four-vector:Ga=nUa, where nR is the rest
frame density

nR =
4pTm2

s2pqd3K2Sm

T
DexpSm

T
D sA4d

andKn is the modified Bassel function of ordern.
The energy-momentum tensor for the Maxwellian is

Tab = hUaUb + habP, sA5d

whereh=mc2nfK3szd /K2szdg sz=m/Td is the total enthalpy
per unit volume, and the pressureP=nT.

The third moment(stress flow tensor) for this distribution
may be expressed as

Mabg = A1U
aUbUg − A2hhab,Ugj, sA6d

where A1=m2nf1+6K3szd /zK2szdg and A2=−m2nK3

3szd /zK2szd. Constructing and using T̄abMabg

=A1T̄
abUaUbUg−2A2T̄

agUa, the equation of motionsthe
second moment of the kinetic equationd, Eq. s12d, becomes

] Tab

] xb − eFabnUb = Frad
a , sA7d

where

Frad
a =

2e3

3m2

] Fab

] xg Tb
g − snhf1 + 2Gszdz−1gT̄abUb

+ f1 + 6Gszdz−1gT̄bgUbUgUaj sA8d

with Gszd=K3szd /K2szd.
The entropy four-flow may be written asSa=nSUa, where

S=lnfK2expszGd /Pz2g+c1 is the entropy per particle. The
equation forS can be obtained directly from Eq.(16), or by
contracting Eq.(21) with Ua:

Ua ] S

] xa =
z

nm
UaFrad

a . sA9d

One can see that without the radiation reaction force the
plasma dynamics is isentropic with a corresponding adiabatic
equation of state.

In the cold plasma limitsz→` ,G→1d, Eq. (21) reduces
to

m
dU

ds
a = eFabUb + sa, sA10d

wheresa has the same form as the single particle, Eq.s1d, but
with ua replaced byUa, and the “time” derivative replaced
by the convective derivatived/ds=gs]t+U ·= d. Thus, as ex-
pected, the cold plasma fluid equation has a form similar to
the one for particle motion. However, for high temperatures,
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the fluid equations turn out to be considerably more com-
plex. In the ultrarelativistic limitsz!1,G<4/zd, for ex-
ample, the force balance reads

Ub ]

] xb s4TUad +
1

n

] P

] xa

= eFabUb −
sT

pe

] Fag

] xb UbUg −
sT

e
Ja

+ 8s
T2

m2fT̄abUb + 3T̄bgUbUgUag.

sA11d

Here Ja, the four-currentsJa=oeGa, summed over particle
spicesd, satisfies the Maxwell equation: ]Fab /]xb

=−s4p /cdJa. It is interesting to note that the last term in the
right-hand side of the equation is proportional toT2, imply-
ing that, for the ultrarelativistic case, it could dominate the
flow dynamics.

We now apply the formalism to an electron-positron fluid.
For a one fluid description of thee-p plasma, we assume that
the temperatureT±=T0, the densityn±=n0/2 and the velocity
U±

a=U0
a, and by implicationuJau!en0, an assumption valid

for flows with large spatiotemporal scales[23]. The equation
describing the dynamics of the electron-positron fluid can
now be written as(omitting the subscript 0 for simplicity)

]

] xb sTab + T̄abd = Fa, sA12d

where

Fa = − snhf1 + 2Gszdz−1gT̄abUb

+ f1 + 6Gszdz−1gT̄bgUbUgUaj, sA13d

and T̄ab andTab have already been defined.
To compare our results with Phinney, we evaluate the

forces in the rest frame of the fluid element:Frest
0

=−4snGz−1T̄rest
00 , andFrest

i =sns1+2Gz−1dT̄rest
i0 si =1,2,3d. We

also notice thatkg82−1l=kg82b82l=3Gz−1, where k¯l de-
notes averaging over the distribution function, andg82 and
b8c are, respectively, the particles’ relativistic factor and ve-

locity. Using the notationsJ08=T̄rest
00 ,J18=T̄rest

30 d, we arrive at the
equations

Frest
0 = − sn4

3 J08kg82b82l, sA14d

Frest
z = snJ18s1 + 2

3kg82b82ld , sA15d

in agreement with Phinneyf12g ssee also Ref.f14gd. Note

also that in Phinney’s equations, the termT̄ab present in the
current force equation is absent.

We find that the formalism developed here reproduces, in
the appropriate limit, the results obtained in past publica-
tions. This increases our confidence in the framework we are
employing to describe the general dynamics of a magnetized
plasma evolving under the combined influence of the Lor-
entz and radiation-reaction forces.

APPENDIX B: THE FOURTH MOMENT

The tensor needed in Eq.(20) is

Qab ; m−2eklMabkl.

In a magnetized plasma, any second-rank tensor involving
moments will have the form

Qab = Q0hab + Q1e
ab + Q2U

aUb + Q3skaUb + kbUad.

sB1d

Here theQi are scalars. By considering Eq.sB1d in the rest
frame ssubscriptRd, we see that

Q0 = QR
33,

Q1 = QR
11 − QR

33,

Q2 = QR
00 + Q0,

Q3 = QR
03.

Because of the simple form of the perpendicular quasiprojec-
tor in the rest frame, it is also easy to expressQR in terms of
MR; for example,

m2QR
33 = MR

1133+ MR
2233= 2MR

1133,

in view of the obvious symmetry. We also use the symmetry,

MR
1111= 3MR

1122,

to conclude that

m2Q0 = 2MR
1133,

m2Q1 = 4MR
1122− 2MR

1133,

m2Q2 = 2sMR
0011+ MR

1133d,

m2Q3 = 2MR
1103.

Next we use the known(model) distribution function to
compute directly the four necessary moments:

MR
1133=

nRT3

K2
FzK3 + DS4K4 −

2K3
2

K2
DG , sB2d

MR
1122=

nRT3

K2
FzK3 + DS6K4 −

2K3
2

K2
DG , sB3d

MR
0011=

nRT3

K2
Fz2K2 + 5zK3 + DS2zK3 + 28K4 +

10K3
2

K2
DG ,

sB4d

MR
1103= −

m2qi

1 + zKS1 +
K4

K2
+

7K4

zK3
D . sB5d

We combine these results with Eq.(20) and conclude that
the second radiation reaction moment is given by
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Smn =
4

3

e4W

m3 fhmnQ0 + emnsp' + Q1d + UmUnQ2

+ skmUn + UmkndQ3g, sB6d

where

Q0 =
2pi

z2K2
FzK3 + 2DS2K4 −

K3
2

K2
DG , sB7d

Q1 =
2pi

z2K2
FzK3 + 2DS4K4 −

K3
2

K2
DG , sB8d

Q2 =
2pi

z2K2
Fz2K2 + 6zK3 + 2DS16K4 + zK3 − 6

K3
2

K2
DG ,

sB9d

Q3 =
− 2qi

1 + zKS1 +
K4

K2
+

7K4

zK3
D . sB10d

APPENDIX C: THE SYSTEM IN THREE-VECTOR
FORM

To write the fluid equations in terms of conventional
three-vectors, we substitute our results for the various com-
ponents of the radiative reaction into known equations for
the magnetized, relativistic plasma fluid[9]. Here we neglect
collisions for simplicity. The corresponding equations of mo-
tion are given by a parallel acceleration law,

ÎW=iS pi

ÎW
D +

p'

2
=iln W+ gnRb ·

d

dt
ShgV + q

nR
D

+ qib ·
dgV

ds
+ gViS ] q0

] t
+ = ·qD

=
4

3

e4

m5WSm1gVi + m3gÎW

B2D + egnREi; sC1d

a parallel-energy evolution law,

ÎW
d

dt

pi

ÎW
+

p'

2

d ln W

dt
− nR

d

dt

h

nR
− gq ·

dV

dt
−

1

g

3S ] q0

] t
+ ¹ ·qD =

4

3

e4

m5WSm1 + m3gÎB2

W
ViD;

sC2d

a perpendicular-energy evolution law,

ÎW
]

] xnSm3k
n + m1U

n

ÎW
D =

4

3

e4

m3WsQ0 + Q1 + p'd; sC3d

and a law for the evolution of heat flow,

5m3g
d lnsm3nR

−6/5d
dt

+ sm2nR + 5Th− 2m2dg2k ·
dV

dt
+

dTh

ds

− m2
d ln ÎW

ds
+ 7m3gk ·

dV

ds
=

4

3

e4

m3WQ3 + ehEi. sC4d

Here theQi are given by Eqs.sB7d–sB10d and we use abbre-
viations introduced previouslyf8g:

m1 =
m

K2
FK3pi + spi − p'dSK3 − 2

K4

K3
K2DG , sC5d

m2 = mspi − p'd
K4

K3
, sC6d

m3 = qi

mK
1 + zK . sC7d
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